Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Noncoding RNA Res ; 9(3): 649-658, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38577022

RESUMEN

In recent years, various long non-coding RNAs (lncRNAs) involved in DNA damage response (DDR) have been identified and studied to deepen our understanding. However, there are rare reports on the association between lncRNAs and base excision repair (BER). Our designed DNA microarray identified dozens of functionally unknown lncRNAs, and their transcription levels significantly increased upon exposure to DNA damage inducers. One of them, named LIP (Long noncoding RNA Interacts with PARP-1), exhibited a significant alteration in transcription in response to methyl methanesulfonate (MMS) and temozolomide (TMZ) treatments. LIP knockdown or knockout cell lines are sensitive to MMS and TMZ, indicating that LIP plays a crucial role in DDR. The loss or insufficiency of LIP significantly influences the efficiency of BER in human cells, and it suggests that LIP participates in the BER pathway. The interaction between LIP and a key factor in BER, poly (ADP-ribose) polymerase 1 (PARP-1), has been confirmed. We identified and characterized LIP, a lncRNA, which is involved in DDR, significantly influences BER efficiency, and interacts with the BER key factor PARP-1. This advances our understanding of the connection between lncRNAs and BER, presenting the potential for the discovery of new drug targets.

2.
bioRxiv ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38260523

RESUMEN

Mammalian DNA replication employs several RecQ DNA helicases to orchestrate the faithful duplication of genetic information. Helicase function is often coupled to the activity of specific nucleases, but how helicase and nuclease activities are co-directed is unclear. Here we identify the inactive ubiquitin-specific protease, USP50, as a ubiquitin-binding and chromatin-associated protein required for ongoing replication, fork restart, telomere maintenance and cellular survival during replicative stress. USP50 supports WRN:FEN1 at stalled replication forks, suppresses MUS81-dependent fork collapse and restricts double-strand DNA breaks at GC-rich sequences. Surprisingly we find that cells depleted for USP50 and recovering from a replication block exhibit increased DNA2 and RECQL4 foci and that the defects in ongoing replication, poor fork restart and increased fork collapse seen in these cells are mediated by DNA2, RECQL4 and RECQL5. These data define a novel ubiquitin-dependent pathway that promotes the balance of helicase: nuclease use at ongoing and stalled replication forks.

3.
Mol Cell ; 83(19): 3533-3545.e5, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37802026

RESUMEN

CRISPR-Cas9 is a powerful gene-editing technology; however, off-target activity remains an important consideration for therapeutic applications. We have previously shown that force-stretching DNA induces off-target activity and hypothesized that distortions of the DNA topology in vivo, such as negative DNA supercoiling, could reduce Cas9 specificity. Using single-molecule optical-tweezers, we demonstrate that negative supercoiling λ-DNA induces sequence-specific Cas9 off-target binding at multiple sites, even at low forces. Using an adapted CIRCLE-seq approach, we detect over 10,000 negative-supercoiling-induced Cas9 off-target double-strand breaks genome-wide caused by increased mismatch tolerance. We further demonstrate in vivo that directed local DNA distortion increases off-target activity in cells and that induced off-target events can be detected during Cas9 genome editing. These data demonstrate that Cas9 off-target activity is regulated by DNA topology in vitro and in vivo, suggesting that cellular processes, such as transcription and replication, could induce off-target activity at previously overlooked sites.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma , ADN/genética , Pinzas Ópticas
4.
Mutagenesis ; 38(4): 192-200, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37300447

RESUMEN

The use of error-corrected Next Generation Sequencing (ecNG) to determine mutagenicity has been a subject of growing interest and potentially a disruptive technology that could supplement, and in time, replace current testing paradigms in preclinical safety assessment. Considering this, a Next Generation Sequencing Workshop was held at the Royal Society of Medicine in London in May 2022, supported by the United Kingdom Environmental Mutagen Society (UKEMS) and TwinStrand Biosciences (WA, USA), to discuss progress and future applications of this technology. In this meeting report, the invited speakers provide an overview of the Workshop topics covered and identify future directions for research. In the area of somatic mutagenesis, several speakers reviewed recent progress made with correlating ecNGS to classic in vivo transgenic rodent mutation assays as well as exploring the use of this technology directly in humans and animals, and in complex organoid models. Additionally, ecNGS has been used for detecting off-target effects of gene editing tools and emerging data suggest ecNGS potential to measure clonal expansion of cells carrying mutations in cancer driver genes as an early marker of carcinogenic potential and for direct human biomonitoring. As such, the workshop demonstrated the importance of raising awareness and support for advancing the science of ecNGS for mutagenesis, gene editing, and carcinogenesis research. Furthermore, the potential of this new technology to contribute to advances in drug and product development and improve safety assessment was extensively explored.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Mutágenos , Animales , Humanos , Londres , Mutagénesis , Mutación , Carcinogénesis , Genómica
5.
Trends Biochem Sci ; 48(4): 321-330, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36357311

RESUMEN

The concept of the histone code posits that histone modifications regulate gene functions once interpreted by epigenetic readers. A well-studied case is trimethylation of lysine 4 of histone H3 (H3K4me3), which is enriched at gene promoters. However, H3K4me3 marks are not needed for the expression of most genes, suggesting extra roles, such as influencing the 3D genome architecture. Here, we highlight an intriguing analogy between the H3K4me3-dependent induction of double-strand breaks in several recombination events and the impact of this same mark on DNA incisions for the repair of bulky lesions. We propose that Su(var)3-9, Enhancer-of-zeste and Trithorax (SET)-domain methyltransferases generate H3K4me3 to guide nucleases into chromatin spaces, the favorable accessibility of which ensures that DNA break intermediates are readily processed, thereby safeguarding genome stability.


Asunto(s)
Cromatina , Metiltransferasas , Metiltransferasas/metabolismo , Metilación , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica
6.
Sci Adv ; 8(45): eadd3686, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36351018

RESUMEN

The interplay between active biological processes and DNA repair is central to mutagenesis. Here, we show that the ubiquitous process of replication initiation is mutagenic, leaving a specific mutational footprint at thousands of early and efficient replication origins. The observed mutational pattern is consistent with two distinct mechanisms, reflecting the two-step process of origin activation, triggering the formation of DNA breaks at the center of origins and local error-prone DNA synthesis in their immediate vicinity. We demonstrate that these replication initiation-dependent mutational processes exert an influence on phenotypic diversity in humans that is disproportionate to the origins' genomic size: By increasing mutational loads at gene promoters and splice junctions, the presence of an origin significantly influences both gene expression and mRNA isoform usage. Last, we show that mutagenesis at origins not only drives the evolution of origin sequences but also contributes to sculpting regulatory domains of the human genome.


Asunto(s)
Replicación del ADN , Genoma Humano , Humanos , Origen de Réplica , Mutación , Mutagénesis
7.
Nat Commun ; 13(1): 3989, 2022 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-35810156

RESUMEN

Understanding how breaks form and are repaired in the genome depends on the accurate measurement of the frequency and position of DNA double strand breaks (DSBs). This is crucial for identification of a chemical's DNA damage potential and for safe development of therapies, including genome editing technologies. Current DSB sequencing methods suffer from high background levels, the inability to accurately measure low frequency endogenous breaks and high sequencing costs. Here we describe INDUCE-seq, which overcomes these problems, detecting simultaneously the presence of low-level endogenous DSBs caused by physiological processes, and higher-level recurrent breaks induced by restriction enzymes or CRISPR-Cas nucleases. INDUCE-seq exploits an innovative NGS flow cell enrichment method, permitting the digital detection of breaks. It can therefore be used to determine the mechanism of DSB repair and to facilitate safe development of therapeutic genome editing. We further discuss how the method can be adapted to detect other genomic features.


Asunto(s)
Roturas del ADN de Doble Cadena , Edición Génica , Sistemas CRISPR-Cas/genética , ADN/genética , Reparación del ADN/genética , Endonucleasas/genética , Edición Génica/métodos , Genómica
8.
BMC Chem ; 15(1): 51, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521464

RESUMEN

BACKGROUND: Local sequence context is known to have an impact on the mutational pattern seen in cancer. The RAS genes and a smoking carcinogen, Benzo[a]pyrene diol epoxide (BPDE), have been utilised to explore these context effects. BPDE is known to form an adduct at the guanines in a number of RAS gene sites, KRAS codons 12, 13 and 14, NRAS codon 12, and HRAS codons 12 and 14. RESULTS: Molecular modelling techniques, along with multivariate analysis, have been utilised to determine the sequence influenced differences between BPDE-adducted RAS gene sequences as well as the local distortion caused by the adducts. CONCLUSIONS: We conclude that G:C > T:A mutations at KRAS codon 12 in the tumours of lung cancer patients (who smoke), proposed to be predominantly caused by BPDE, are due to the effect of the interaction methyl group at the C5 position of the thymine base in the KRAS sequence with the BPDE carcinogen investigated causing increased distortion. We further suggest methylated cytosine would have a similar effect, showing the importance of methylation in cancer development.

9.
Cell Death Differ ; 27(12): 3337-3353, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32587379

RESUMEN

Despite recent advances in our understanding of the function of long noncoding RNAs (lncRNAs), their roles and functions in DNA repair pathways remain poorly understood. By screening a panel of uncharacterized lncRNAs to identify those whose transcription is induced by double-strand breaks (DSBs), we identified a novel lncRNA referred to as LRIK that interacts with Ku, which enhances the ability of the Ku heterodimer to detect the presence of DSBs. Here, we show that depletion of LRIK generates significantly enhanced sensitivity to DSB-inducing agents and reduced DSB repair efficiency. In response to DSBs, LRIK enhances the recruitment of repair factors at DSB sites and facilitates γH2AX signaling. Our results demonstrate that LRIK is necessary for efficient repairing DSBs via nonhomologous end-joining pathway.


Asunto(s)
Reparación del ADN por Unión de Extremidades/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/metabolismo , Autoantígeno Ku/metabolismo , ARN Largo no Codificante/genética , Células A549 , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Autoantígeno Ku/genética , Transducción de Señal
10.
Genome Res ; 29(1): 74-84, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30552104

RESUMEN

Repair of UV-induced DNA damage requires chromatin remodeling. How repair is initiated in chromatin remains largely unknown. We recently demonstrated that global genome-nucleotide excision repair (GG-NER) in chromatin is organized into domains in relation to open reading frames. Here, we define these domains, identifying the genomic locations from which repair is initiated. By examining DNA damage-induced changes in the linear structure of nucleosomes at these sites, we demonstrate how chromatin remodeling is initiated during GG-NER. In undamaged cells, we show that the GG-NER complex occupies chromatin, establishing the nucleosome structure at these genomic locations, which we refer to as GG-NER complex binding sites (GCBSs). We demonstrate that these sites are frequently located at genomic boundaries that delineate chromosomally interacting domains (CIDs). These boundaries define domains of higher-order nucleosome-nucleosome interaction. We demonstrate that initiation of GG-NER in chromatin is accompanied by the disruption of dynamic nucleosomes that flank GCBSs by the GG-NER complex.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Reparación del ADN/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Genoma Fúngico/fisiología , Nucleosomas , Saccharomyces cerevisiae , Nucleosomas/genética , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
Toxicol Lett ; 288: 44-54, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29462690

RESUMEN

Due to the specific antimicrobial activity of silver nanoparticles (AgNPs), they are widely used in wound dressings, coatings in medical devices and household products. In spite of the well-documented genotoxicity of AgNPs, the molecular mechanisms of relieving AgNP-induced DNA damage stress remain poorly understood. We report here that one of the DNA repair factors, XPF, plays a crucial role in resisting AgNP-induced DNA damage stress in human cells. Following culture with AgNP-containing media, severely decreased colony forming abilities have been observed in XPF mutant and knockdown cells compared with wild type or control cells respectively, demonstrating that XPF is required to resist the AgNP-induced stress. By employing the comet assays, we confirmed that DNA damages were produced in all tested cells following their exposure to AgNPs for 48 h. However, more DNA damage accumulations were observed in XPF mutant and knockdown cells than wild type or control cells respectively. Moreover, severe DNA damage response and the activation of p53-mediated DNA damage response network result from mutated XPF or significantly reduced XPF level in human cells. Together, our results illustrate that XPF is the indispensable factor involved in relieving AgNP-induced DNA damage stress in human cells.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/genética , Nanopartículas del Metal/toxicidad , Mutágenos/toxicidad , Plata/toxicidad , Ensayo de Unidades Formadoras de Colonias , Ensayo Cometa , Técnicas de Silenciamiento del Gen , Genes p53/genética , Humanos , Cultivo Primario de Células , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/efectos de los fármacos , Transfección
12.
Methods Mol Biol ; 1672: 77-99, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29043618

RESUMEN

The genetic information contained within the DNA molecule is highly susceptible to chemical and physical insult, caused by both endogenous and exogenous sources that can generate in the order of thousands of lesions a day in each of our cells (Lindahl, Nature 362(6422):709-715, 1993). DNA damages interfere with DNA metabolic processes such as transcription and replication and can be potent inhibitors of cell division and gene expression. To combat these regular threats to genome stability, a host of DNA repair mechanisms have evolved. When DNA lesions are left unrepaired due to defects in the repair pathway, mutations can arise that may alter the genetic information of the cell. DNA repair is thus fundamental to genome stability and defects in all the major repair pathways can lead to cancer predisposition. Therefore, the ability to accurately measure DNA damage at a genomic scale and determine the level, position, and rates of removal by DNA repair can contribute greatly to our understanding of how DNA repair in chromatin is organized throughout the genome. For this reason, we developed the 3D-DIP-Chip protocol described in this chapter. Conducting such measurements has potential applications in a variety of other fields, such as genotoxicity testing and cancer treatment using DNA damage inducing chemotherapy. Being able to detect and measure genomic DNA damage and repair patterns in individuals following treatment with chemotherapy could enable personalized medicine by predicting response to therapy.


Asunto(s)
Daño del ADN , Reparación del ADN , Genoma , Genómica , Análisis de Secuencia por Matrices de Oligonucleótidos , Antineoplásicos/farmacología , Línea Celular , Biología Computacional/métodos , ADN de Hongos , Inestabilidad Genómica , Genómica/métodos , Humanos , Mutágenos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Rayos Ultravioleta , Levaduras/efectos de los fármacos , Levaduras/genética , Levaduras/efectos de la radiación
13.
Genome Res ; 26(10): 1376-1387, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27470111

RESUMEN

The rates at which lesions are removed by DNA repair can vary widely throughout the genome, with important implications for genomic stability. To study this, we measured the distribution of nucleotide excision repair (NER) rates for UV-induced lesions throughout the budding yeast genome. By plotting these repair rates in relation to genes and their associated flanking sequences, we reveal that, in normal cells, genomic repair rates display a distinctive pattern, suggesting that DNA repair is highly organized within the genome. Furthermore, by comparing genome-wide DNA repair rates in wild-type cells and cells defective in the global genome-NER (GG-NER) subpathway, we establish how this alters the distribution of NER rates throughout the genome. We also examined the genomic locations of GG-NER factor binding to chromatin before and after UV irradiation, revealing that GG-NER is organized and initiated from specific genomic locations. At these sites, chromatin occupancy of the histone acetyl-transferase Gcn5 is controlled by the GG-NER complex, which regulates histone H3 acetylation and chromatin structure, thereby promoting efficient DNA repair of UV-induced lesions. Chromatin remodeling during the GG-NER process is therefore organized into these genomic domains. Importantly, loss of Gcn5 significantly alters the genomic distribution of NER rates; this has implications for the effects of chromatin modifiers on the distribution of mutations that arise throughout the genome.


Asunto(s)
Cromatina/genética , Reparación del ADN , Genoma Fúngico , Acetilación , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Tasa de Mutación , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Nucleic Acids Res ; 43(19): 9133-46, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26400171

RESUMEN

The mutational pattern for the TP53 tumour suppressor gene in lung tumours differs to other cancer types by having a higher frequency of G:C>T:A transversions. The aetiology of this differing mutation pattern is still unknown. Benzo[a]pyrene,diol epoxide (BPDE) is a potent cigarette smoke carcinogen that forms guanine adducts at TP53 CpG mutation hotspot sites including codons 157, 158, 245, 248 and 273. We performed molecular modelling of BPDE-adducted TP53 duplex sequences to determine the degree of local distortion caused by adducts which could influence the ability of nucleotide excision repair. We show that BPDE adducted codon 157 has greater structural distortion than other TP53 G:C>T:A hotspot sites and that sequence context more distal to adjacent bases must influence local distortion. Using TP53 trinucleotide mutation signatures for lung cancer in smokers and non-smokers we further show that codons 157 and 273 have the highest mutation probability in smokers. Combining this information with adduct structural data we predict that G:C>T:A mutations at codon 157 in lung tumours of smokers are predominantly caused by BPDE. Our results provide insight into how different DNA sequence contexts show variability in DNA distortion at mutagen adduct sites that could compromise DNA repair at well characterized cancer related mutation hotspots.


Asunto(s)
Benzo(a)pireno/química , Carcinógenos/química , Aductos de ADN/química , Daño del ADN , Genes p53 , Neoplasias Pulmonares/genética , Mutación , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/química , Secuencia de Bases , Codón , ADN/química , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Fumar
15.
Sci Rep ; 5: 13395, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26307543

RESUMEN

ChIP-chip is a microarray based technology for determining the genomic locations of chromatin bound factors of interest, such as proteins. Standard ChIP-chip analyses employ peak detection methodologies to generate lists of genomic binding sites. No previously published method exists to enable comparative analyses of enrichment levels derived from datasets examining different experimental conditions. This restricts the use of the technology to binary comparisons of presence or absence of features between datasets. Here we present the R package Sandcastle ­ Software for the Analysis and Normalisation of Data from ChIP-chip AssayS of Two or more Linked Experiments ­ which allows for comparative analyses of data from multiple experiments by normalising all datasets to a common background. Relative changes in binding levels between experimental datasets can thus be determined, enabling the extraction of latent information from ChIP-chip experiments. Novel enrichment detection and peak calling algorithms are also presented, with a range of graphical tools, which facilitate these analyses. The software and documentation are available for download from http://reedlab.cardiff.ac.uk/sandcastle.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Interpretación Estadística de Datos , Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Programas Informáticos , Algoritmos , Simulación por Computador , Minería de Datos/métodos , Modelos Estadísticos , Lenguajes de Programación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Nucleic Acids Res ; 43(15): 7360-70, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26150418

RESUMEN

Regulating gene expression programmes is a central facet of the DNA damage response. The Dun1 kinase protein controls expression of many DNA damage induced genes, including the ribonucleotide reductase genes, which regulate cellular dNTP pools. Using a combination of gene expression profiling and chromatin immunoprecipitation, we demonstrate that in the absence of DNA damage the yeast Rad4-Rad23 nucleotide excision repair complex binds to the promoters of certain DNA damage response genes including DUN1, inhibiting their expression. UV radiation promotes the loss of occupancy of the Rad4-Rad23 complex from the regulatory regions of these genes, enabling their induction and thereby controlling the production of dNTPs. We demonstrate that this regulatory mechanism, which is dependent on the ubiquitination of Rad4 by the GG-NER E3 ligase, promotes UV survival in yeast cells. These results support an unanticipated regulatory mechanism that integrates ubiquitination of NER DNA repair factors with the regulation of the transcriptional response controlling dNTP production and cellular survival after UV damage.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleótidos/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Ubiquitinación , Rayos Ultravioleta , Daño del ADN , Regiones Promotoras Genéticas , Transcripción Genética , Ubiquitina-Proteína Ligasas/metabolismo , Levaduras/enzimología , Levaduras/genética , Levaduras/metabolismo , Levaduras/efectos de la radiación
18.
Nucleic Acids Res ; 41(19): 9006-19, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23925126

RESUMEN

Nucleotide excision repair (NER) is critical for maintaining genome integrity. How chromatin dynamics are regulated to facilitate this process in chromatin is still under exploration. We show here that a histone H2A variant, Htz1 (H2A.Z), in nucleosomes has a positive function in promoting efficient NER in yeast. Htz1 inherently enhances the occupancy of the histone acetyltransferase Gcn5 on chromatin to promote histone H3 acetylation after UV irradiation. Consequently, this results in an increased binding of a NER protein, Rad14, to damaged DNA. Cells without Htz1 show increased UV sensitivity and defective removal of UV-induced DNA damage in the Htz1-bearing nucleosomes at the repressed MFA2 promoter, but not in the HMRa locus where Htz1 is normally absent. Thus, the effect of Htz1 on NER is specifically relevant to its presence in chromatin within a damaged region. The chromatin accessibility to micrococcal nuclease in the MFA2 promoter is unaffected by HTZ1 deletion. Acetylation on previously identified lysines of Htz1 plays little role in NER or cell survival after UV. In summary, we have identified a novel aspect of chromatin that regulates efficient NER, and we provide a model for how Htz1 influences NER in Htz1 nucleosomes.


Asunto(s)
Reparación del ADN , Histonas/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilación , Adenosina Trifosfatasas/genética , Cromatina/química , Daño del ADN , Enzimas Reparadoras del ADN/metabolismo , Eliminación de Gen , Histona Acetiltransferasas/metabolismo , Histonas/genética , Lipoproteínas/genética , Viabilidad Microbiana , Feromonas/genética , Regiones Promotoras Genéticas , Dímeros de Pirimidina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Rayos Ultravioleta
19.
Recent Pat DNA Gene Seq ; 7(2): 157-66, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23862717

RESUMEN

A technique has emerged over the past decade combining chromatin immunoprecipitation with DNA microarray analysis. This is a powerful and sensitive strategy that has been used extensively to characterise protein interactions with chromatin and epigenetic changes such as acetylation and methylation throughout the genome of different organisms. This technique has revolutionised our understanding of molecular genomics, continues to be widely used and is currently being applied in novel areas of cancer research. In this publication we review the historical context of this technology and offer current and future perspectives on how this technique is currently being developed and modified to allow its use in novel areas of research. We discuss the potential for this technique and its ongoing important role in biological research particularly in relation to cancer research. We also offer insight into the potential clinical application of this technology in stratified medicine, particularly in the field of cancer therapy.


Asunto(s)
Genoma Humano , Inmunoprecipitación de Cromatina , Mapeo Cromosómico , Epigénesis Genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Patentes como Asunto
20.
Proc Natl Acad Sci U S A ; 110(4): 1434-9, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23292936

RESUMEN

Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.


Asunto(s)
Antígenos CD/metabolismo , Carcinoma Basocelular/inmunología , Carcinoma Basocelular/patología , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Animales , Carcinoma Basocelular/metabolismo , Diferenciación Celular , Proliferación Celular , Humanos , Queratinas/metabolismo , Factor 4 Similar a Kruppel , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Neoplasias Cutáneas/metabolismo , Receptor Smoothened , Trasplante Heterólogo , Ensayo de Tumor de Célula Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...